10x^2-13x+1=4

Simple and best practice solution for 10x^2-13x+1=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x^2-13x+1=4 equation:



10x^2-13x+1=4
We move all terms to the left:
10x^2-13x+1-(4)=0
We add all the numbers together, and all the variables
10x^2-13x-3=0
a = 10; b = -13; c = -3;
Δ = b2-4ac
Δ = -132-4·10·(-3)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-17}{2*10}=\frac{-4}{20} =-1/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+17}{2*10}=\frac{30}{20} =1+1/2 $

See similar equations:

| 19+5n=7(-6+8n | | -3x-17=(17+3x | | −34=9j−7 | | t+45=t+t-34 | | 6(x+7)=5(x+4) | | x-13=-46 | | 5(2+q)−8=12 | | –9z+8+1=4z+9 | | 2(x+5)-3(3x+4)=12 | | h+13=25 | | k(6)=24 | | -3(x-6)+4x=-10 | | 12p=83 | | -2y^2+50=100 | | 40-5n=12 | | 12x4=40+3x | | ∞∑n=0(23^(1/(n+3))−23^(1/(n+4))) | | ∞∑n=0(23^(1/(n+3))−23^(1/(n+4)) | | 5n+12=4n+15 | | 2x+1+x+2+6x-3=180 | | r+9=83 | | d-12=24 | | 10u−5u=15 | | x-48+x+8=x+48 | | 2(3-5x)=9(8-2x) | | 100–6x=160–x | | 2(-4x+1=-49 | | (4x+2)+(3x-7)=65 | | X^3+3x^2+3x-76=0 | | -11x-27=-7x+29 | | 20=1/2(4x+20)+2 | | 7-5/2(8r-6)+2r=3 |

Equations solver categories